
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 312 (2008) 140–150

www.elsevier.com/locate/jsvi
Two simple methods to suppress the residual vibrations of a
translating or rotating flexible cantilever beam

K. Shina, M.J. Brennanb,�

aSchool of Mechanical Engineering, Andong National University, 388 Songcheon-Dong, Andong 760-749, Republic of Korea
bDynamics Group, Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, UK

Received 25 April 2007; received in revised form 8 October 2007; accepted 20 October 2007

Available online 11 December 2007
Abstract

In this paper, two methods for controlling the residual vibrations of a translating or rotating Euler–Bernoulli cantilever

beam are considered. Although a beam has an infinite number of vibration modes, when it simply changes its position by

translation or rotation the first mode is the main contributor to the total response. Thus, the problem can be reduced to the

base acceleration excitation of a single-degree-of-freedom system. Two simple methods are suggested for suppressing the

residual vibration of such a system without considering any control algorithms. Both methods are based on the transient

response of the system—namely, the shock response spectrum (SRS). The first method is simple and can be used for lightly

damped systems, while the second method can be applied to more general situations. The result of the second method is

similar to that of the input shaping method; however, in the method proposed here, both position and time to move from

one position to another can be controlled simultaneously.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

When a flexible structure changes its position by suddenly translating or rotating following a command
input, residual vibration is inevitable due to the inertial load imposed on the flexible structure. Suppressing
this type of residual vibration has become very important in many engineering applications such as space
structures, cranes and flexible robot manipulators. There are two main categories for controlling the residual
vibrations; one is closed-loop control, for example PD, PID, and adaptive control [1–4], and the other is open-
loop control, using methods such as pre-shaping the command input [5–9]. The latter method has been applied
widely since being suggested by Singer and Seering [5]. It can be implemented easily once the dynamics of the
structure, namely the natural frequencies and damping ratios, are known. Although there are many variants
of the method to enhance the robustness, the basic principle is the same, which is to design the best filter

to suppress the residual vibrations. For the input shaping method, the filter consists of a series of impulses
(Fig. 1).
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 2. The conceptual approach of the transient response method.
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The aim of this paper is to show that the same results can be achieved with only knowledge of the system
dynamics, without considering the filter, i.e., we do not rely on any control strategy. Two methods are proposed,
one is simple and fast and the other is somewhat related to the input shaping method. Both methods are purely
based on the transient response of the structure—e.g., the shock response spectrum (SRS), and are much easier
to implement because there is no need to consider a control algorithm. Moreover, the proposed methods
control both the position and the time taken to change the position simultaneously. The basic idea follows
from the SRS [11,12]. For an undamped single-degree-of-freedom system with base excitation, when the
excitation force is a pulse-like input (e.g., rectangular, half-sine, etc.), the residual response is zero if the
duration of the pulse is appropriately chosen. If this principle is applied to our case, then the problem becomes
to determine an input (pulse) that automatically suppresses the residual vibration by considering the response
of the structure excited by a pulse-like input. The problem can be depicted as in Fig. 2.

A typical application of the method may be a slewing flexible robot arm that follows a command input
signal. Although there are many modes of vibration, for this particular problem, it is generally sufficient to
consider the first mode only. This is demonstrated in Section 2. The details of the new approach follow in
subsequent sections.

2. Response of a flexible beam under an inertial force

Consider a flexible robot arm crudely modelled as a uniform cantilever beam rigidly attached to a rotating
hub as in Fig. 3, where the hub rotates to a desired angle following the command input. In this model, inertia
of the hub is neglected. As in the references, for example [1,3,6,9,10], we neglect the centrifugal force, which
may arise due to the rotation of beam. (Note that we do not consider the vibration while the beam is rotating,
but the main concern is the ‘residual’ vibration after the beam stops.) We also assume that the beam neither
spins around its axis nor translates along it.

In this case, the cantilever beam is effectively excited by a distributed inertial force, so the equation of
motion can be written as [10]

EI
q4yðx; tÞ

qx4
þm

q2yðx; tÞ
qt2

¼ �mx€yðtÞ, (1)

where EI is the bending stiffness, m the mass per unit length, and �mx€yðtÞ the inertial force per unit length,
which is linearly proportional to x. Note that, as in Fig. 3, y(x, t) is defined in the rotating coordinate system
(x�y), not in the fixed coordinate system (X�Y). The solution to Eq. (1) is

yðx; tÞ ¼
Xn

r¼1

frðxÞqrðtÞ, (2)
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where fr(x) are the mode shapes which are given by

frðxÞ ¼ cosh brx� cos brx�
cosh brLþ cos brL

sinh brLþ sin brL
ðsinh brx� sin brxÞ, (3)

which are orthogonal and normalised such that [13]Z L

0

frðxÞfsðxÞdx ¼
0 for ras;

L for r ¼ s:

�
(4)

The natural frequencies are given by or ¼ b2r
ffiffiffiffiffiffiffiffiffiffiffiffi
EI=m

p
, where br is the wavenumber, which can be determined

from the characteristic equation cos brL cosh brL ¼ �1. The values of brL for the first three natural
frequencies are [13]

b1L ¼ 1:875104; b2L ¼ 4:694091; b3L ¼ 7:854757. (5)

Using the natural frequencies and corresponding mode shapes, the equation of motion given in Eq. (1)
can be written in terms of generalised coordinates qr as [10] (in the reference a different normalisation factor
is used)

€qr þ o2
r qr ¼ �

€y
1

L

Z L

0

xfrðxÞdx. (6)

This equation describes a set of simple oscillators, one for each mode of vibration, each subject to base
excited acceleration. Thus, the solution for qr is the same as that of a single-degree-of-freedom system excited
by �€yðtÞ and scaled by

1

L

Z L

0

xfrðxÞdx.

For a beam that is initially at rest, qr is given by

qrðtÞ ¼ �
1

L

Z L

0

xfrðxÞdx

� �
1

or

Z t

0

€yðtÞ sin orðt� tÞdt. (7)

To determine the contributions of each mode to the total response y(x, t) at x, the amplitude of each mode is
normalised with respect to the first mode so that

ArðxÞ ¼
frðxÞ

f1ðxÞ

����
����
R L

0 xfrðxÞdx
.
orR L

0 xf1ðxÞdx
.
o1

¼
frðxÞ

f1ðxÞ

����
���� b1

br

� �2
R L

0 xfrðxÞdxR L

0 xf1ðxÞdx
. (8)

In most applications, the tip motion of the beam is generally of interest, and the scaling factor at the tip
Ar(L) is given by

A1ðLÞ ¼ 1; A2ðLÞ ¼ 0:0225; A3ðLÞ ¼ 0:0032. (9)

It can be seen that more than 97% of the displacement amplitude at the tip is from the contribution of the
first mode. This is because the distributed force due to the inertia, which acts only in one direction, is linearly
proportional to x and so predominantly excites the first mode. For translational motion, the contribution of
the first mode is slightly less, but the first mode still contributes to more than 90% of the total response. Thus,
this paper focuses on the control of this mode only. In the following section, two methods for suppressing
residual vibrations of a single-degree-of-freedom system are discussed.

3. Control of residual vibration using the transient response method

As mentioned earlier, the methods described in this section are closely related to the SRS [11,12]. From the
SRS of a single-degree-of-freedom system it is possible to determine the shock duration such that the residual
amplitude of the SRS is zero for a given shock pulse shape. Because the first mode of a rotating beam
is of interest, a single-degree-of-freedom system subject to base acceleration as shown in Fig 4 is considered.
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The equation of motion is given by

€yðtÞ þ o2
nyðtÞ ¼ � €uðtÞ. (10)

Now the problem is to suppress the residual vibration of y(t) after the base moves to a desired position and
stops. For zero initial conditions, the solution to Eq. (10) is

yðtÞ ¼ �
1

on

Z t

0

€uðtÞ sin onðt� tÞdt. (11)

The problem is to determine a particular pulse that ensures that the residual amplitude of the relative
response y(t) is zero. Assuming that the base moves from rest, the base displacement u(t) satisfies

uð0Þ ¼ 0 and uðtXTÞ ¼ uc, (12)

where uc is the desired position for the tip, and T the time at which this is to be achieved. Since it is impossible
to make u(0) ¼ uc, the simplest form of u(t) as it moves from rest to the desired position could be linear motion
as shown in Fig. 5a. The corresponding velocity profile is a constant velocity pulse as shown in Fig. 5b, and the
acceleration profile consists of two spikes as shown in Fig. 5c.

Note that the two spikes of the acceleration profile have opposite signs, i.e.,

€uðtÞ ¼
uc

T
dðtÞ � dðt� TÞ½ �, (13)

where d(t) is the delta function. Also, note that the area under the acceleration profile must be zero over the
time T since the corresponding velocity profile is pulse-like, i.e., _uð0Þ ¼ _uðTÞ. This is due to the fact that, for the
base to stop moving at uc, the base must decelerate as much as it accelerates. Thus, the following must be
satisfied:

Z T

0

€uðtÞdt ¼ 0. (14)
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Moreover, the area of the velocity pulse must be equal to the desired displacement; thus, u(T) ¼ uc, i.e.,

uðTÞ ¼

Z T

0

_uðtÞdt ¼ uc. (15)

Now consider the response y(t) to the above acceleration profile. Substituting Eq. (13) into Eq. (11) and
simplifying gives

yðtÞ ¼ �
uc

onT
sin

2p
Tn

t� sin
2p
Tn

t�
2pT

Tn

� �� �
; tXT , (16)

where Tn ¼ 2p/on. Examining Eq. (16), it can be seen that for tXT the response, y(t), becomes zero when
T ¼ kTn, where ‘k’ is a positive integer. Thus, for a constant velocity pulse, there is no residual vibration if the
desired time is equal to an integer multiple of the natural period. This result may be considered as a
generalisation of the well-known fact that can be found in a number of fundamental vibration texts; that is a
rectangular force pulse results in zero residual vibration if the duration of the pulse is equal to the natural
period of the undamped system.

The above results may also be interpreted in the frequency domain by considering the Fourier transform of
the velocity profile, FT ½ _uðtÞ�. In this example, the velocity pulse is a rectangular pulse of duration T, and the
‘zero crossing points’ of the FT ½ _uðtÞ� occur at frequencies equal to k/T. Thus, the system is not excited at the
natural frequency if T ¼ kTn. Using this frequency domain interpretation, it can be seen that Fourier
transforms of the input displacement or acceleration profile can also be used. However, the velocity profile
may be the best to consider because it is always pulse-like, and thus it is much easier to find the zero crossing
points.

Since the residual vibration is related to the velocity excitation pulse, any shape of velocity profile that
satisfies the two conditions given in Eqs. (14) and (15) can be used. For example, a half-sine velocity excitation
profile as shown in Fig. 6b can be used. The corresponding displacement profile and acceleration profiles are
shown in Fig. 6a and c.

Note that the above pulses satisfy the two conditions. In this case, the residual vibration is zero if the desired
time is

T ¼ ðk þ 0:5ÞTn ðk a positive integerÞ. (17)
(c)

(a)

(b)

u (t)

u· (t)

ü (t)

t
T

t
T

t 
2T2

2T

uc

ucπ

2ucπ

Fig. 6. (a) Displacement profile, (b) velocity profile, and (c) acceleration profile for a half-sine velocity pulse.
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The procedure to ensure zero residual vibrations is summarised below:
1.
 Decide on the desired position uc (e.g., a rotation angle).

2.
 Decide on any velocity pulse _uðtÞ (rectangular, half-sine, cycloid, etc.).

3.
 Determine an appropriate pulse duration T for zero residual vibrations using the SRS or FT ½ _uðtÞ�.

4.
 Adjust the amplitude of _uðtÞ such that

uðTÞ ¼

Z T

0

_uðtÞdt ¼ uc.
Note that the condition
R T

0
€uðtÞdt ¼ 0 is satisfied automatically because _uð0Þ ¼ _uðTÞ.

If the natural frequency does not match exactly with a zero in the SRS or FT ½ _uðtÞ�, some residual vibration
will be excited. The largest amplitude of residual vibration is generated by a rectangular velocity pulse
excitation. A half-sine excitation velocity pulse will result in a lower residual vibration amplitude, but this is at
the expense of increasing the pulse duration (i.e., T ¼ 1.5Tn rather than T ¼ Tn for the rectangular pulse). In
general, there is a trade-off between the robustness and the desired time (pulse duration) for control. For
example, if the natural period is estimated 1.5 times the true natural period and if the rectangular pulse is used
to minimise the desired time, then the maximum amplitude of the residual vibration is more than 6 times
greater than the case if the half-sine pulse is used. This can be easily inspected by consulting SRS graphs of
various pulses [12]. Note that, by examining the SRS, the residual vibration amplitude, the maximum
amplitude of the response and the robustness can be determined at the same time.

So far, ‘damping’ of the system has not been considered. If a damped system is considered, the equation of
motion is given by

€yðtÞ þ 2zon _yðtÞ þ o2
nyðtÞ ¼ � €uðtÞ (18)

and the solution for y(t) is

yðtÞ ¼ �
1

od

Z t

0

€uðtÞe�zonðt�tÞ sin odðt� tÞdt, (19)

where od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
is the damped natural frequency. In this case, it is not possible to completely suppress

the residual vibration using the method above. However, minimal residual vibration can be achieved by
replacing Tn with the damped natural period, Td ¼ 2p/od. For example, using the rectangular velocity pulse,
the desired time is T ¼ kTd.

In applications where the damping is very small, the method outlined above may be sufficient. However,
when the damping is significant the method must be modified to take into account the decrease in amplitude
due to the damping. In this case, zero residual vibration can be achieved by splitting the pulse into two pulses

with the same shape but with different amplitudes, and adjusting the timing of the second pulse so that its
response is exactly out of phase to the response due to the first pulse.

For this method, any shape of pulse with any desired time T that satisfies the two conditions given in Eqs.
(14) and (15) is permitted, provided that the second pulse starts at a time kTd/2 (k an odd positive integer).
Consider two consecutive acceleration pulses €up scaled by A1 and A2 as shown in Fig. 7, where the second
pulse starts at Td/2 (i.e., k ¼ 1 is used for simplicity).
ü (t)

t
Tp

A1 A2

2

Td

T

Tp: pulse duration

T : desired time

Fig. 7. Two consecutive acceleration pulses.
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As it can be seen in Fig. 7, the acceleration profile is

€uðtÞ ¼ A1 €upðtÞ þ A2 €upðt� Td=2Þ (20)

and so the response y(t) for tXT( ¼ Td/2+Tp) is the sum of responses to two pulses, i.e.,

yðtÞ ¼ y1ðtÞ þ y2ðtÞ, (21)

where

y1ðtÞ ¼ �
A1

od

e�zont

Z Tp

0

€upðtÞezont sin od ðt� tÞdt,

y2ðtÞ ¼ �
A2

od

e�zont

Z Td=2þTp

Td=2
€upðt� Td=2Þe

zont sin odðt� tÞdt. ð22a;bÞ

Letting t0 ¼ t�Td/2 for the second convolution integral, the response to the second pulse becomes

y2ðtÞ ¼
A2

od

e�zontezonTd=2

Z Tp

0

€upðt0Þezont0 sin odðt� t0Þdt0. (23)

Note that the signs of y1(t) and y2(t) are opposite and the integral parts of y1(t) and y2(t) are similar. As a
result, the total response y(t) for tXT can be set to zero if the amplitude of each pulse is scaled such that

A1

A2
¼ ezonTd=2 ¼ ed=2, (24)

where d ¼ zonTd is the logarithmic decrement. As an example of this result, consider a velocity input profile
as in Fig. 8(a) to a damped system with z ¼ 0.3 and on ¼ 2p. Then the displacement response y(t) is as in
Fig. 8(b), where it can be seen that y(t) ¼ 0 for tXT.

If the second pulse starts at time kTd/2 rather than at Td/2, then the amplitude ratio between two pulses is
A1/A2 ¼ ekd/2. This amplitude relationship is also valid for the velocity profiles, i.e.,

_uðtÞ ¼ A1 _upðtÞ þ A2 _upðt� ktd=2Þ, (25)
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where A1=A2 ¼ ekd=2. To calculate the amplitudes A1 and A2 for the velocity pulse, the condition given in
Eq. (15) needs to be considered. In this case, it is

uðTÞ ¼ uðTP þ kTd=2Þ ¼

Z TPþkTd=2

0

_uðtÞdt ¼ uc. (26)

Because the duration of each pulse is the same, it follows thatZ TpþkTd=2

0

_uðtÞdt ¼ ðA1 þ A2Þ

Z Tp

0

_up dt ¼ uc. (27)

Noting that A1=A2 ¼ ekd=2, and if the integral term is set to unity for convenience, i.e.,
R TP

0
_up dt ¼ 1, the

desired amplitudes are given by

A1 ¼
uce

kd=2

1þ ekd=2
; A2 ¼

uc

1þ ekd=2
. (28)

For an undamped system A1 ¼ A2 ¼ uc/2. The procedure to ensure zero residual vibrations for a heavily
damped system is summarised below:
1.
 Decide on the desired position uc.

2.
 Decide on the pulse duration Tp, and determine the desired time T ¼ Tp+kTd/2 (k an odd positive

integer). (Note that the minimum desired time is T ¼ Tp+Td/2 for k ¼ 1.)

3.
 Choose any velocity pulse (rectangular, half-sine, cycloid, etc.), and normalise the pulse such thatR Tp

0
_up dt ¼ 1.
4.
 Calculate the amplitudes of the velocity pulses using Eq. (28).

5.
 Obtain the velocity profile consisting of two pulses as in Eq. (25).
Note that this method can also be applied to an undamped system by replacing Td with Tn. If k ¼ 1 is used,
the results are identical to the input-shaping method [5], which is described in Appendix A. However, an
advantage of using this method is that one can control the position and the desired time simultaneously provided

that T4Td/2.
An example follows to illustrate the approach. Suppose we wish to rotate a flexible beam to the desired

angle uc as quickly as possible, before one period of the fundamental natural frequency (i.e., Td/2oToTd).
For simplicity, z ¼ 0 and a rectangular velocity pulse is used as shown in Fig. 9.

For an undamped system, the amplitude of the two velocity pulses is the same, i.e., A1 ¼ A2 ¼ uc/2. Thus,
the velocity profile becomes

_uðtÞ ¼
uc

2
½ _upðtÞ þ _upðt� Td=2Þ�. (29)

This velocity profile is depicted in Fig. 10(b), where the desired time T is Tn/2+Tp; it will give the zero

residual vibration for tXTn/2+Tp. From the figure, it is easily seen that the velocity profile satisfies the
condition Z Tn=2þTp

0

_uðtÞdt ¼ uc.
u·p (t)

1

Tp

t
Tp

2

Tn Tn

Tn = 2π
nω

Fig. 9. Normalised rectangular velocity pulse.
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The corresponding displacement and acceleration profiles are shown in Fig. 10(a) and (c), respectively. Note

that the acceleration profile satisfies the condition
R Tn=2þTp

0
€uðtÞdt ¼ 0 given in Eq. (15).

From the example given above, it can be seen that the proposed method to control residual vibration is
potentially very effective and simple to use. In practice, a rectangular velocity pulse may not be appropriate
due to the discontinuity in velocity that would be practically difficult for the hub to follow. Thus, a half-sine,
versed-sine or trapezoidal shape of velocity pulse may be used although the use of these profiles would result in
an increase of the time taken to move the beam to its desired position.

4. Conclusions

Two simple methods have been proposed to suppress the residual vibrations of a translating or rotating
flexible cantilever beam excited as it is moved from one position to another. The methods are based on the
transient response of the system, i.e., the SRS, and do not require any filtering processes or control algorithm.
Once an appropriate velocity profile has been chosen by considering the SRS or the Fourier transform of the
velocity pulse, the methods can be applied in a straightforward manner. The first method is the easiest to apply
and is generally sufficient for most lightly damped structures, while the second method is more generally
applicable. It is demonstrated that the second method produces an identical result to the input shaping method
if the desired time is chosen as T ¼ Tp+Td/2. However, in the approach proposed here it gives more insight to
the dynamical behaviour and is much simpler than the input shaping method. Moreover, the desired time and
the position can be specified simultaneously, which may be beneficial in many practical problems. The
proposed methods may be extended to a multi-degree-of-freedom system, although the analysis of transient
response becomes very complicated. However, for most applications, where the structure is excited by an
inertial force, the single-degree-of-freedom approximation may be sufficient.
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Appendix A. Relationship between the transient response method and the input shaping method

Consider the conceptual diagram of the input shaping method shown in Fig. 1 that depicts the relationship
between the command input and the shaped input. For a single-degree-of-freedom system, the simplest form
of input shaping filter can be realised with a two-impulse sequence as shown in Fig. A1. In this figure, A1, A2,
and t1 are given by [6]

A1 ¼
1

1þ E
; A2 ¼

E

1þ E
; t1 ¼

p

on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p , (A.1)

where E ¼ e�zp=
ffiffiffiffiffiffiffiffi
1�z2
p

.
Note that the values of A1, A2 in Eq. (A.1) are the same as those in Eq. (28) if k ¼ 1 and uc ¼ 1. Also, t1

becomes Td/2 in this case. The shaped input is the convolution of the command input and the input shaping
filter. To demonstrate the relationship between this method and the transient response method, consider the
example shown in Section 3 (undamped system). Then A1, A2, and t1 are given by

A1 ¼
1

2
; A2 ¼

1

2
; t1 ¼

Tn

2
. (A.2)
A1

t
t1

A2

0

i (t)

Fig. A1. Input shaping filter.
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Fig. A2. (a) Input shaping filter of an undamped system, (b) command input, and (c) shaped input.
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Thus, the input shaping filter can be depicted as in Fig. A2(a). If the command input is the straight line
displacement profile, u(t) as in Fig. A2(b), the shaped input, which is the convolution of Fig. A2(a) and (b),
becomes as in Fig. A2(c). Note that Fig. A2(c) is exactly the same as Fig. 10(a).
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